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Introduction

Au programme

@ Percolation par arétes dans Z¢
© Percolation de premier passage

© Geéomeétrie aléatoire avec des processus de Poisson de routes
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Introduction aux probabilités

Bréve histoire des probabilités

Théorie mathématique née de la modélisation de phénomeénes aléatoires
(e.g, jeux de hasard).

Quelques dates clés :

e Correspondance entre Pascal et Fermat autour des problémes de dés
du chevalier de Méré (1654).

e Théorie de la mesure, intégration de Lebesgue (1901).
e Axiomatique de Kolmogorov (1933).

Une facon de définir la discipline : étude des variables aléatoires.
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Introduction aux probabilités

Variables aléatoires

Soit E un ensemble. Une variable aléatoire a valeurs dans E est une
fonction X d'un ensemble “abstrait” Q vers E.

Plutét que de voir X comme la fonction w € Q — X(w), on voit X comme
un élément “aléatoire” de E, et on considére les probabilités P(X € B),
pour Bc E.

Conformément a l'intuition, ces nombrent vérifient :
e P(X eB)e[0,1] pour tout B c E,
e P(Xew)=0etP(XecE)=1,

e si By, B c E sont disjoints, alors
P(XeBiuBy)=P(XeB)+P(XeBy).

Ils caractérisent la loi de X.

G. Blanc (LMO, Univ. Paris-Saclay) Percolation et géométrie aléatoire 7 day 4/38



Introduction aux probabilités

Variables aléatoires

Pour travailler avec une variable aléatoire X, on commence par définir sa
loi en prescrivant les probabilités P(X € B), pour B c E.

Pour n'importe quelle fonction p: B ¢ E — u(B) € [0,1] qui vérifie :
o (@) =0etu(E)=1,

e si By, B> c E sont disjoints, alors

p(Biu By) = u(B1) + pu(Bz2),

on peut construire une variable aléatoire X de loi 1, i.e, telle que
P(X € B) = u(B) pour tout Bc E.
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Introduction aux probabilités

Exemple

E est un ensemble fini, et

B
u(B) = % pour tout B c E.

Si X est une variable aléatoire de loi y, alors
P(X = x) = pfx} = — fout x ¢ £
=x)=pu{x}=—— pourtout x € E.

K 4E p

On dit que X est de loi uniforme sur E.
e Lorsque E ={1,...,6}, on peut penser 3 X comme le résultat d'un
tirage de dé.
e Lorsque E ={0,1}, on peut penser 3 X comme le résultat d'un tirage

a pile ou face.
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Introduction aux probabilités

Exemple

E={0,1}, et

w(@)=0, p{lt=p, p{0}=1-p, et p{0,1}=1,

ou p€[0,1] est un paramétre.

Si X est une variable aléatoire de loi y, alors

P(X=1)=p{l}=p et P(X=0)=p{0}=1-p.

On dit que X est de loi de Bernoulli de paramétre p.

On peut penser 3 X comme le résultat d'un tirage a pile ou face, avec une
piéce qui tombe sur pile avec probabilité p, et sur face avec probabilité
1-p. (Lorsque p = 1/2, on retrouve |'exemple précédent.)
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Introduction aux probabilités

Indépendance

E est un ensemble fini, et

B
wu(B) = % pour tout B c E? = {(x1,x2) ; x1,x € E}.

Si (X1, X2) est une variable aléatoire de loi p, alors pour tous By, By c E,
on a
P(Xl € Bl ; X2 € Bz) = P((Xl,Xg) € Bl X Bg)

= p(B1 x B2)
_ #B1-#B>
-

On dit que les variables aléatoires Xj et X5 sont indépendantes.

= P(Xl € Bl) -P(Xg € Bg).
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Introduction aux probabilités

Suites de variables aléatoires indépendantes

Pour n'importe quelle fonction p: B c E — u(B) € [0,1] qui vérifie :
e u(@)=0et u(E)=1,

e Si By, B, c E sont disjoints, alors

(Bru Ba) = u(B1) + pu(Bz),

on peut construire une suite (X1, Xa,...) de variables aléatoires
indépendantes de loi y, i.e, telles que P(X, € B) = u(B) pour tout B c E.
On a alors, pour tous By,...,B,cE,

P(X1€B1;...; XpeBy)=P(X1€B1)-...-P(X, € By)
— 1(By) .- u(By).
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Introduction aux probabilités

Exemple
E={0,1}, et

w@)=0, p{l}=p, p{0}=1-p, et p{0,1}=1,

ot p €[0,1] est un paramétre.

Si (X1, Xa,...) est une suite de variables aléatoires indépendantes de loi ,
i.e, de loi de Bernoulli de paramétre p, alors on peut penser a (X1, Xa,...)
comme le résultat d'une infinité de tirages a pile ou face, avec une piéce
qui tombe sur pile avec probabilité p, et sur face avec probabilité 1 — p.
On a, par exemple :

P(X1=1;...; Xp,=1)=P(Xy=1)-...-P(X, =1)
=p-....p=p".
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Introduction aux probabilités

Des questions?
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Percolation par arétes dans z?

@ Percolation par arétes dans Z¢
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Percolation par arétes dans z?

Le modele
On se place sur le réseau hypercubique Z9, ou d € N*.
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Percolation par arétes dans z?

Le modéle

Pour chaque aréte e de Z9, on garde e avec probabilité p, et on I'enléve

avec probabilité 1 — p, ot p € [0,1] est un paramétre du modéle, et ce
indépendamment des autres arétes.
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Percolation par arétes dans z?

Le modéle

Pour chaque aréte e de Z9, on garde e avec probabilité p, et on I'enléve

avec probabilité 1 — p, ot p € [0,1] est un paramétre du modéle, et ce
indépendamment des autres arétes.
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Percolation par arétes dans z?

Le modéle

Formellement, on se donne une famille (Xe, e aréte de Zd) de variables
aléatoires indépendantes a valeurs dans {0,1}, de loi donnée par

Pp(Xe=1)=p et Pp(Xe=0)=1-p.

Pour chaque aréte e de Z9, on garde e si X. = 1, et on |'enléve si X, = 0.
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Percolation par arétes dans z?

Le modéle

Formellement, on se donne une famille (Xe, e aréte de Zd) de variables
aléatoires indépendantes a valeurs dans {0,1}, de loi donnée par

Pp(Xe=1)=p et Pp(Xe=0)=1-p.

Pour chaque aréte e de Z9, on garde e si X. = 1, et on |'enléve si X, = 0.

Modéle introduit par Broadbent et Hammersley en 1957.
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Percolation par arétes dans z?

La question

Intuitivement, plus p est grand, plus la composante connexe de |'origine a

de chances d'étre grande.

(0, 1)

(0,0)[(1,0

p=1/2

G. Blanc (LMO, Univ. Paris-Saclay)

)
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Percolation par arétes dans z?

Le modéle

Questions(s) : en fonction du paramétre p, existe-t-il une composante
connexe infinie?
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Percolation par arétes dans z?

Le modéle

Questions(s) : en fonction du paramétre p, existe-t-il une composante
connexe infinie? Quelle est la probabilité

6(p) = Po(0 +> o0)

que la composante connexe de |'origine soit infinie ?
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Percolation par arétes dans z?

Le modéle

Questions(s) : en fonction du paramétre p, existe-t-il une composante
connexe infinie? Quelle est la probabilité

6(p) = Po(0 +> o0)

que la composante connexe de |'origine soit infinie ?
Proposition

Pour tout p€[0,1], on a

IP, (il existe une composante connexe infinie) € {0,1}.

De plus,

[P, (il existe une composante connexe infinie) =1 < 6(p) > 0.
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Percolation par arétes dans z?

Paramétre critique et transition de phase
La fonction 6 : p € [0,1] = IP,(0 <> o) est croissante, et on a

0(0)=0 et 6(1)=1.
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Percolation par arétes dans z?

Paramétre critique et transition de phase
La fonction 6 : p € [0,1] = IP,(0 <> o) est croissante, et on a
0(0)=0 et 6(1)=1.

On a donc le diagramme suivant :

ol
pc =inf{pe[0,1]:6(p)>0}.
est le paramétre critique. On dit que le modéle présente une transition de
phase lorsque p. € ]0, 1].
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lecasd =1

Proposition

Lorsque d =1, on a p. = 1. On a donc, pour tout p € [0, 1],

P, (il existe une composante connexe infinie) = 0.
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lecasd =1

Proposition

Lorsque d =1, on a p. = 1. On a donc, pour tout p € [0, 1],

P, (il existe une composante connexe infinie) = 0.

Idée.
Soit p € [0,1[. Montrons que f(p) =0. On a

0(p) = Pp(0 < )
<Pp(0 < n) +P,(0 < —n)
Z2.By(0 < ),

et ce quel que soit neN.
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lecasd =1

Xop=1 Xo1n=1

PP(O<—> n) ZIP)(X()’l =1;...; Xo-1n = 1)
“P(Xo1=1)...-P(Xp1n= 1)
:p~"‘-p

=p" — 0.

n—oo

On a donc 6(p) = 0. O

G. Blanc (LMO, Univ. Paris-Saclay) Percolation et géométrie aléatoire 7 day 20 /38



Percolation par arétes dans zd

Simulations en dimension d =2
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Percolation par arétes dans z?

Le résultat

Théoréme
Lorsque d > 2, on a pc € ]0,1[. On a donc :
e pour tout p € [0, pc|,

P, (il existe une composante connexe infinie) = 0,
e pour tout p € |pc,1],

IP, (il existe une composante connexe infinie) = 1.

On peut méme montrer que pour tout p € [0,1], on a

P, (il existe au moins deux composantes connexes infinies) = 0.
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Percolation par arétes dans z?

La grosse question

Théoréme
Lorsque d =2, on a p. =1/2, et 6(1/2) = 0. J

0(p) = Pp(0 < o0)

Lorsque d > 3, on ne sait pas calculer p.. On conjecture que 6(p.) =0,
mais on ne sait pas le démontrer pour d = 3.
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Percolation de premier passage

© Percolation de premier passage
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Percolation de premier passage

Le modéle

A chaque aréte e de Z9, on attribue un temps de passage aléatoire
Te € [0,00], et ce indépendamment des autres arétes.
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Percolation de premier passage

Le modéle

A chaque aréte e de Z9, on attribue un temps de passage aléatoire

Te € [0, 0], et ce indépendamment des autres arétes.

019 026 021 031

019}

0.78 |

0.89 !

0.64

0.00 }

012 046 [0.28 (017 [0.25 [o.52
_______ 0.75 ] 015 [ 088 | 0.97 | 067 | ..
053 078 [0.62 [0.10 [o.97 [o.07
_______ 0.64 ] 088 | 070 | 047 [ 044 | .
050 0.09 [0.67 [0.28 [o.66 [o.62
_______ 0.92 ] 094078 ) 065]033] .
(0,0) |(1,0)
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Percolation de premier passage

Le modéle

A chaque chemin = (ey,...,e,), on attribue le temps de trajet

G. Blanc (LM

019 026 0.21

T(y)=Te+...+ T¢

N

Univ. Paris-Saclay)

______ 019} 0.78 3 089} 0.64 } 0.00 .
0.12 1046 0.28 [0.17 ]0.25 ]0.52
______ 0751 015 ] 088 ] 097 | 067 | .
0.53 10.78 10.62 [0.10 |0.97
______ 064 ] 08 | 070 [ 047 04a |
0.50 [0.09 [0.67 10.28 ]0.66
______ 0.92 1 094 | 075 | 0.60 |
0.43 (0,0){(1,0)
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Percolation de premier passage

Le modéle

Pour tous x, y € Z9, on pose

T(x,y) = inf T(v).

7y chemin de x a y

Intuitivement, c'est le temps de trajet optimal de x a y.
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Percolation de premier passage

Le modéle

Pour tous x, y € Z9, on pose

T(x,y) = inf , T(v).

7 chemin de x a

Intuitivement, c'est le temps de trajet optimal de x a y.

019 026 0.21

0
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0.12 1046 (0.28 ]0.17 |0.25 [0.52
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0.53 |0.78 [0.62 ]0.10 0.97
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Percolation de premier passage

Le modéle

Modele introduit par Hammersley et Welsh en 1965.
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Percolation de premier passage

Le modéle

Modele introduit par Hammersley et Welsh en 1965.

Question(s) : a quoi ressemble
{xe Z7: T(0,x) < t}

pour t grand ?
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Percolation de premier passage

Le modéle

Modele introduit par Hammersley et Welsh en 1965.

Question(s) : a quoi ressemble
{xe Z7: T(0,x) < t}

pour t grand ? Comment se comporte T (0, ne;) pour n grand, ou
e1 = (1,0,...,0)?
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ercolation de premier passage

Simulation en dimension d =2
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lecasd =1

Proposition

Lorsque d =1, on a

n n—oo0

E[Te] = 17

ot E[T,] est I'espérance de la variable aléatoire T.
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Percolation de premier passage

lecasd=1
Idée
TOJ 711/,—1.7/,
0 n

On a

T(O, n) B T071 +...+ Tnfl,n

n n ’

ou les variables aléatoires Tq1,..., Th-1,, sont indépendantes et de méme
loi que Te. Le résultat découle de la loi des grands nombres. Ol

4
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Percolation de premier passage

Le résultat

Théoréme

Lorsque d > 2, il existe une constante «y € [0, E[ T.]] telle que

P(M_w):l_

n n—oo
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Percolation de premier passage

Le résultat

Théoréme

Lorsque d > 2, il existe une constante «y € [0, E[ T.]] telle que

P(M_w):l_

n n—oo

Idée.

Le résultat découle de la propriété de sous-additivité suivante : pour tous
m,neN, on a

T(0,(m+n)e;) < T(0,mer)+ T(mey,(m+n)ep).
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Percolation de premier passage

Sous-additivité

0 mey (m+mn)ep

Pour tous chemins 71 de 0 @ me; et 72 de me; a3 (m+ n)ey, on a
T,(m+n)er) < T(y)+ T(y2).
On en déduit que

T(0,(m+n)e;) < T(0,mer)+ T(mey,(m+n)ey).

O

v

G. Blanc (LMO, Univ. Paris-Saclay) Percolation et géométrie aléatoire 7 day 33/38




Géométrie aléatoire avec des processus de Poisson de routes

© Géométrie aléatoire avec des processus de Poisson de routes
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Géométrie aléatoire avec des processus de Poisson de routes

Processus de Poisson de routes

Une route est un couple (¢, v), ott £ c R? est une droite (affine), et v e R:
est la limitation de vitesse sur /.
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Géométrie aléatoire avec des processus de Poisson de routes

Le modéle

On se donne un processus de Poisson de routes dans RY.
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Géométrie aléatoire avec des processus de Poisson de routes

Le modéle

On se donne un processus de Poisson de routes dans RY.

On roule sur le réseau de routes aléatoire engendré par le processus, en
respectant les limitations de vitesse : & chaque chemin ~, on associe son
temps de trajet T (7).

G. Blanc (LMO, Univ. Paris-Saclay) Percolation et géométrie aléatoire 7 day 37/38



Géométrie aléatoire avec des processus de Poisson de routes

Le modéle

On se donne un processus de Poisson de routes dans RY.

On roule sur le réseau de routes aléatoire engendré par le processus, en
respectant les limitations de vitesse : & chaque chemin ~, on associe son
temps de trajet T (7).

Pour tous x,y € R?, on note

T(x,y)= inf T(v).

7 chemin de x a y

Intuitivement, c'est le temps de trajet optimal de x 3 y.
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Géométrie aléatoire avec des processus de Poisson de routes

Le modéle

On se donne un processus de Poisson de routes dans RY.

On roule sur le réseau de routes aléatoire engendré par le processus, en
respectant les limitations de vitesse : & chaque chemin ~, on associe son
temps de trajet T (7).

Pour tous x,y € R?, on note

T(x,y)= inf T(v).

7 chemin de x a y

Intuitivement, c'est le temps de trajet optimal de x 3 y.

Modeéle introduit par Aldous en 2012.
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Géométrie aléatoire avec des processus de Poisson de routes

Simulations en dimension d =2

=™
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Géométrie aléatoire avec des processus de Poisson de routes

Simulations en dimension d =2

e

"“5

%

. 4

”

Merci de votre attention!
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