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Introduction

Au programme

1 Percolation par arêtes dans Zd

2 Percolation de premier passage

3 Géométrie aléatoire avec des processus de Poisson de routes
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Introduction aux probabilités

Brève histoire des probabilités

Théorie mathématique née de la modélisation de phénomènes aléatoires
(e.g, jeux de hasard).

Quelques dates clés :

• Correspondance entre Pascal et Fermat autour des problèmes de dés
du chevalier de Méré (1654).

• Théorie de la mesure, intégration de Lebesgue (1901).

• Axiomatique de Kolmogorov (1933).

Une façon de définir la discipline : étude des variables aléatoires.
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Introduction aux probabilités

Variables aléatoires

Soit E un ensemble. Une variable aléatoire à valeurs dans E est une
fonction X d’un ensemble “abstrait” Ω vers E .

Plutôt que de voir X comme la fonction ω ∈ Ω↦ X (ω), on voit X comme
un élément “aléatoire” de E , et on considère les probabilités P(X ∈ B),
pour B ⊂ E .

Conformément à l’intuition, ces nombrent vérifient :

• P(X ∈ B) ∈ [0,1] pour tout B ⊂ E ,

• P(X ∈ ∅) = 0 et P(X ∈ E) = 1,

• si B1,B2 ⊂ E sont disjoints, alors

P(X ∈ B1 ⊔B2) = P(X ∈ B1) + P(X ∈ B2).

Ils caractérisent la loi de X .
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Introduction aux probabilités

Variables aléatoires

Pour travailler avec une variable aléatoire X , on commence par définir sa
loi en prescrivant les probabilités P(X ∈ B), pour B ⊂ E .

Pour n’importe quelle fonction µ ∶ B ⊂ E ↦ µ(B) ∈ [0,1] qui vérifie :

• µ(∅) = 0 et µ(E) = 1,

• si B1,B2 ⊂ E sont disjoints, alors

µ(B1 ⊔B2) = µ(B1) + µ(B2),

on peut construire une variable aléatoire X de loi µ, i.e, telle que
P(X ∈ B) = µ(B) pour tout B ⊂ E .
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Introduction aux probabilités

Exemple

E est un ensemble fini, et

µ(B) =

#B

#E
pour tout B ⊂ E .

Si X est une variable aléatoire de loi µ, alors

P(X = x) = µ{x} =
1

#E
pour tout x ∈ E .

On dit que X est de loi uniforme sur E .

• Lorsque E = {1, . . . ,6}, on peut penser à X comme le résultat d’un
tirage de dé.

• Lorsque E = {0,1}, on peut penser à X comme le résultat d’un tirage
à pile ou face.
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Introduction aux probabilités

Exemple

E = {0,1}, et

µ(∅) = 0, µ{1} = p, µ{0} = 1 − p, et µ{0,1} = 1,

où p ∈ [0,1] est un paramètre.

Si X est une variable aléatoire de loi µ, alors

P(X = 1) = µ{1} = p et P(X = 0) = µ{0} = 1 − p.

On dit que X est de loi de Bernoulli de paramètre p.
On peut penser à X comme le résultat d’un tirage à pile ou face, avec une
pièce qui tombe sur pile avec probabilité p, et sur face avec probabilité
1 − p. (Lorsque p = 1/2, on retrouve l’exemple précédent.)
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Introduction aux probabilités

Indépendance

E est un ensemble fini, et

µ(B) =

#B

#E 2 pour tout B ⊂ E 2
= {(x1, x2) ; x1, x2 ∈ E}.

Si (X1,X2) est une variable aléatoire de loi µ, alors pour tous B1,B2 ⊂ E ,
on a

P(X1 ∈ B1 ; X2 ∈ B2) = P((X1,X2) ∈ B1 ×B2)

= µ(B1 ×B2)

=

#B1 ⋅#B2

#E 2 = P(X1 ∈ B1) ⋅ P(X2 ∈ B2).

On dit que les variables aléatoires X1 et X2 sont indépendantes.

G. Blanc (LMO, Univ. Paris-Saclay) Percolation et géométrie aléatoire π day 8 / 38



Introduction aux probabilités

Suites de variables aléatoires indépendantes

Pour n’importe quelle fonction µ ∶ B ⊂ E ↦ µ(B) ∈ [0,1] qui vérifie :

• µ(∅) = 0 et µ(E) = 1,

• Si B1,B2 ⊂ E sont disjoints, alors

µ(B1 ⊔B2) = µ(B1) + µ(B2),

on peut construire une suite (X1,X2, . . .) de variables aléatoires
indépendantes de loi µ, i.e, telles que P(Xn ∈ B) = µ(B) pour tout B ⊂ E .
On a alors, pour tous B1, . . . ,Bn ⊂ E ,

P(X1 ∈ B1 ; . . . ; Xn ∈ Bn) = P(X1 ∈ B1) ⋅ . . . ⋅ P(Xn ∈ Bn)

= µ(B1) ⋅ . . . ⋅ µ(Bn).
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Introduction aux probabilités

Exemple

E = {0,1}, et

µ(∅) = 0, µ{1} = p, µ{0} = 1 − p, et µ{0,1} = 1,

où p ∈ [0,1] est un paramètre.

Si (X1,X2, . . .) est une suite de variables aléatoires indépendantes de loi µ,
i.e, de loi de Bernoulli de paramètre p, alors on peut penser à (X1,X2, . . .)

comme le résultat d’une infinité de tirages à pile ou face, avec une pièce
qui tombe sur pile avec probabilité p, et sur face avec probabilité 1 − p.
On a, par exemple :

P(X1 = 1 ; . . . ; Xn = 1) = P(X1 = 1) ⋅ . . . ⋅ P(Xn = 1)

= p ⋅ . . . ⋅ p = pn.
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Introduction aux probabilités

Des questions ?
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Percolation par arêtes dans Zd

1 Percolation par arêtes dans Zd

2 Percolation de premier passage

3 Géométrie aléatoire avec des processus de Poisson de routes
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Percolation par arêtes dans Zd

Le modèle

On se place sur le réseau hypercubique Zd , où d ∈ N∗.

0 1
(0, 0) (1, 0)

(0, 1)

Z Z2

G. Blanc (LMO, Univ. Paris-Saclay) Percolation et géométrie aléatoire π day 13 / 38



Percolation par arêtes dans Zd

Le modèle

Pour chaque arête e de Zd , on garde e avec probabilité p, et on l’enlève
avec probabilité 1 − p, où p ∈ [0,1] est un paramètre du modèle, et ce
indépendamment des autres arêtes.

0 1
(0, 0) (1, 0)

(0, 1)
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Percolation par arêtes dans Zd

Le modèle

Formellement, on se donne une famille (Xe , e arête de Zd
) de variables

aléatoires indépendantes à valeurs dans {0,1}, de loi donnée par

Pp(Xe = 1) = p et Pp(Xe = 0) = 1 − p.

Pour chaque arête e de Zd , on garde e si Xe = 1, et on l’enlève si Xe = 0.

Modèle introduit par Broadbent et Hammersley en 1957.
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Percolation par arêtes dans Zd

La question

Intuitivement, plus p est grand, plus la composante connexe de l’origine a
de chances d’être grande.

(0, 0) (1, 0)

(0, 1)

(0, 0) (1, 0)

(0, 1)

p = 1/2 p = 2/3
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Percolation par arêtes dans Zd

Le modèle

Questions(s) : en fonction du paramètre p, existe-t-il une composante
connexe infinie ?

Quelle est la probabilité

θ(p) = Pp(0↔∞)

que la composante connexe de l’origine soit infinie ?

Proposition

Pour tout p ∈ [0,1], on a

Pp (il existe une composante connexe infinie) ∈ {0,1}.

De plus,

Pp (il existe une composante connexe infinie) = 1⇐⇒ θ(p) > 0.
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Percolation par arêtes dans Zd

Paramètre critique et transition de phase

La fonction θ ∶ p ∈ [0,1] ↦ Pp(0↔∞) est croissante, et on a

θ(0) = 0 et θ(1) = 1.

On a donc le diagramme suivant :

0 pc 1

θ(p) = 0 θ(p) > 0

où
pc = inf{p ∈ [0,1] ∶ θ(p) > 0}.

est le paramètre critique. On dit que le modèle présente une transition de
phase lorsque pc ∈ ]0,1[.
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Percolation par arêtes dans Zd

Le cas d = 1

Proposition

Lorsque d = 1, on a pc = 1. On a donc, pour tout p ∈ [0,1[,

Pp(il existe une composante connexe infinie) = 0.

Idée.
Soit p ∈ [0,1[. Montrons que θ(p) = 0. On a

θ(p) = Pp(0↔∞)

≤ Pp(0↔ n) + Pp(0↔ −n)

= 2 ⋅ Pp(0↔ n),

et ce quel que soit n ∈ N.
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Percolation par arêtes dans Zd

Le cas d = 1

0 n

X0,1 = 1 Xn−1,n = 1

Pp(0↔ n) = P(X0,1 = 1 ; . . . ; Xn−1,n = 1)

= P(X0,1 = 1) ⋅ . . . ⋅ P(Xn−1,n = 1)

= p ⋅ . . . ⋅ p

= pn Ð→
n→∞

0.

On a donc θ(p) = 0.
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Percolation par arêtes dans Zd

Simulations en dimension d = 2

p = 0.49 p = 0.5 p = 0.51
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Percolation par arêtes dans Zd

Le résultat

Théorème
Lorsque d ≥ 2, on a pc ∈ ]0,1[. On a donc :

• pour tout p ∈ [0,pc[,

Pp(il existe une composante connexe infinie) = 0,

• pour tout p ∈ ]pc ,1],

Pp(il existe une composante connexe infinie) = 1.

On peut même montrer que pour tout p ∈ [0,1], on a

Pp(il existe au moins deux composantes connexes infinies) = 0.
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Percolation par arêtes dans Zd

La grosse question

Théorème
Lorsque d = 2, on a pc = 1/2, et θ(1/2) = 0.

p

θ(p) = Pp(0 ↔ ∞)

0 1

1

pc

Lorsque d ≥ 3, on ne sait pas calculer pc . On conjecture que θ(pc) = 0,
mais on ne sait pas le démontrer pour d = 3.
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Percolation de premier passage

1 Percolation par arêtes dans Zd

2 Percolation de premier passage

3 Géométrie aléatoire avec des processus de Poisson de routes
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Percolation de premier passage

Le modèle

À chaque arête e de Zd , on attribue un temps de passage aléatoire
Te ∈ [0,∞], et ce indépendamment des autres arêtes.

0 1

0.19 0.26 0.21 0.31 0.43
(0, 0) (1, 0)

0.19 0.78 0.89 0.64 0.00

0.12 0.46 0.28 0.17 0.25

0.75 0.15 0.88 0.97 0.67

0.53 0.78 0.62 0.10 0.97

0.52

0.07

0.64 0.88 0.70 0.47 0.44

0.50 0.09 0.67 0.28 0.66 0.62

0.92 0.94 0.78 0.65 0.33
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Percolation de premier passage

Le modèle

À chaque chemin γ = (e1, . . . , en), on attribue le temps de trajet

T (γ) = Te1 + . . . +Ten .

0 1
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0.19 0.78 0.89 0.64 0.00
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0.07
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Percolation de premier passage

Le modèle

Pour tous x , y ∈ Zd , on pose

T (x , y) = inf
γ chemin de x à y

T (γ).

Intuitivement, c’est le temps de trajet optimal de x à y .
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Percolation de premier passage

Le modèle

Modèle introduit par Hammersley et Welsh en 1965.

Question(s) : à quoi ressemble

{x ∈ Zd
∶ T (0, x) ≤ t}

pour t grand ? Comment se comporte T (0,ne1) pour n grand, où
e1 = (1,0, . . . ,0) ?
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Percolation de premier passage

Simulation en dimension d = 2
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Percolation de premier passage

Le cas d = 1

Proposition
Lorsque d = 1, on a

P(

T (0,n)
n

Ð→
n→∞

E[Te]) = 1,

où E[Te] est l’espérance de la variable aléatoire Te .
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Percolation de premier passage

Le cas d = 1

Idée.

0 n

T0,1 Tn−1,n

On a
T (0,n)

n
=

T0,1 + . . . +Tn−1,n

n
,

où les variables aléatoires T0,1, . . . ,Tn−1,n sont indépendantes et de même
loi que Te . Le résultat découle de la loi des grands nombres.
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Percolation de premier passage

Le résultat

Théorème
Lorsque d ≥ 2, il existe une constante γ ∈ [0,E[Te]] telle que

P(

T (0,ne1)
n

Ð→
n→∞

γ) = 1.

Idée.
Le résultat découle de la propriété de sous-additivité suivante : pour tous
m,n ∈ N, on a

T (0, (m + n)e1) ≤ T (0,me1) +T (me1, (m + n)e1).
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Percolation de premier passage

Sous-additivité

0 me1 (m + n)e1

γ1 γ2

Pour tous chemins γ1 de 0 à me1 et γ2 de me1 à (m + n)e1, on a

T (0, (m + n)e1) ≤ T (γ1) +T (γ2).

On en déduit que

T (0, (m + n)e1) ≤ T (0,me1) +T (me1, (m + n)e1).
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Géométrie aléatoire avec des processus de Poisson de routes

1 Percolation par arêtes dans Zd

2 Percolation de premier passage

3 Géométrie aléatoire avec des processus de Poisson de routes
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Géométrie aléatoire avec des processus de Poisson de routes

Processus de Poisson de droites
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Géométrie aléatoire avec des processus de Poisson de routes

Processus de Poisson de routes

Une route est un couple (`, v), où ` ⊂ Rd est une droite (affine), et v ∈ R∗
+

est la limitation de vitesse sur `.
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Géométrie aléatoire avec des processus de Poisson de routes

Le modèle

On se donne un processus de Poisson de routes dans Rd .

On roule sur le réseau de routes aléatoire engendré par le processus, en
respectant les limitations de vitesse : à chaque chemin γ, on associe son
temps de trajet T (γ).

Pour tous x , y ∈ Rd , on note

T (x , y) = inf
γ chemin de x à y

T (γ).

Intuitivement, c’est le temps de trajet optimal de x à y .

Modèle introduit par Aldous en 2012.
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Géométrie aléatoire avec des processus de Poisson de routes

Simulations en dimension d = 2

Merci de votre attention !
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